Automated Construction of 3d Statistical Shape Models
نویسندگان
چکیده
Automated segmentation of medical images is a difficult task because of the complexity of anatomic structures, inter-patient variability, and imperfect image acquisition. Prior knowledge, in the form of pointbased statistical shape models (point distribution models) of a structure of interest can greatly assist segmentation to robustly find the structure in a patient’s image. Point distribution models are obtained through sets of corresponding landmarks lying on surfaces of training structures. The key to the automated construction of a three-dimensional (3D) statistical shape model is the identification of corresponding landmarks on training shapes, which is a challenging task. This paper presents a novel method for automated construction of 3D point distribution models. Corresponding surface points are obtained by two main steps: 1) volumes of interest (VOI), each containing one training structure, are manually defined, a reference structure is manually extracted from one training VOI and its surface is established and represented by a set of (reference) points, 2) reference landmarks are propagated to other training VOIs by transformations that are obtained by hierarchical elastic registration between the reference and each of the remaining training VOIs. We illustrate our approach using computed tomography data of the lumbar vertebra.
منابع مشابه
Automatic Construction of 3D Statistical Deformation Models Using Non-rigid Registration
In this paper we introduce the concept of statistical deformation models (SDM) which allow the construction of average models of the anatomy and their variability. SDMs are build by performing a statistical analysis of the deformations required to map anatomical features in one subject into the corresponding features in another subject. The concept of SDMs is similar to active shape models (ASM...
متن کاملAutomated 3D PDM Construction Using Deformable Models
In recent years several methods have been proposed for constructing statistical shape models to aid image analysis tasks by providing a-priori knowledge. Examples include principal component analysis (PCA) of manually or semi-automatically placed corresponding landmarks on the learning shapes (point distribution models, PDM), which is time consuming and subjective. However, automatically establ...
متن کاملDevelopment of 3D statistical mandible models for cephalometric measurements
PURPOSE The aim of this study was to provide sex-matched three-dimensional (3D) statistical shape models of the mandible, which would provide cephalometric parameters for 3D treatment planning and cephalometric measurements in orthognathic surgery. MATERIALS AND METHODS The subjects used to create the 3D shape models of the mandible included 23 males and 23 females. The mandibles were segment...
متن کاملStatistical shape models for 3D medical image segmentation: A review
Statistical shape models (SSMs) have by now been firmly established as a robust tool for segmentation of medical images. While 2D models have been in use since the early 1990 s, wide-spread utilization of three-dimensional models appeared only in recent years, primarily made possible by breakthroughs in automatic detection of shape correspondences. In this article, we review the techniques requ...
متن کاملA 3D Statistical Shape Model Of The Pelvic Bone For Segmentation
Statistical models of shape are a promising approach for robust and automatic segmentation of medical image data. This work describes the construction of a statistical shape model of the pelvic bone. An interactive approach is proposed for solving the correspondence problem which is able to handle shapes of arbitrary topology, suitable for the genus 3 surface of the pelvic bone. Moreover it all...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004